
Rue de Stassart, 36 • B-1050 Bruxelles
Tel : +32 2 550 08 11 • Fax : +32 2 550 08 19

EUROPEAN COMMITTEE FOR STANDARDIZATION
C OM ITÉ EUR OP ÉEN DE NOR M ALIS AT ION
EUROPÄISCHES KOMITEE FÜR NORMUNG

WORKSHOP CWA 14050-12

AGREEMENT November 2000

ICS 33.160.40; 35.200; 35.240.40

Extensions for Financial Services (XFS) interface specification -
Release 3.0 - Part 12: Camera Device Class Interface

© 2000 CEN All rights of exploitation in any form and by any means reserved world-wide for
CEN National Members

Ref. No CWA 14050-12:2000 E

This CEN Workshop Agreement can in no way be held as being an official standard
as developed by CEN National Members.

Page 2
CWA 14050-12:2000

Table of Contents

Foreword 3

1. Introduction 5

1.1 Background to Release 3.0 5

1.2 XFS Service-Specific Programming.. 5

2. Banking Cameras.. 7

3. References... 8

4. Info Commands.. 9

4.1 WFS_INF_CAM_STATUS.. 9

4.2 WFS_INF_CAM_CAPABILITIES ... 11

5. Execute Commands... 13

5.1 WFS_CMD_CAM_TAKE_PICTURE.. 13

5.2 WFS_CMD_CAM_RESET.. 14

6. Events 15

6.1 WFS_USRE_CAM_MEDIATHRESHOLD.. 15

6.2 WFS_EXEE_CAM_INVALIDDATA .. 15

7. C - Header file 16

Page 3
CWA 14050-12:2000

Foreword

This CWA is revision 3.0 of the XFS interface specification.

The move from an XFS 2.0 specification (CWA 13449) to a 3.0 specification has been prompted by a series of
factors.

Initially, there has been a technical imperative to extend the scope of the existing specification of the XFS
Manager to include new devices, such as the Card Embossing Unit.

Similarly, there has also been pressure, through implementation experience and the advance of the Microsoft
technology, to extend the functionality and capabilities of the existing devices covered by the specification.

Finally, it is also clear that our customers and the market are asking for an update to a specification, which is
now over 2 years old. Increasing market acceptance and the need to meet this demand is driving the Workshop
towards this release.

The clear direction of the CEN/ISSS XFS Workshop, therefore, is the delivery of a new Release 3.0
specification based on a C API. It will be delivered with the promise of the protection of technical investment for
existing applications and the design to safeguard future developments.

The CEN/ISSS XFS Workshop gathers suppliers as well as banks and other financial service companies. A list
of companies participating in this Workshop and in support of this CWA is available from the CEN/ISSS
Secretariat.

This CWA was formally approved by the XFS Workshop meeting on 2000-10-18. The specification is
continuously reviewed and commented in the CEN/ISSS Workshop on XFS. It is therefore expected that an
update of the specification will be published in due time as a CWA, superseding this revision 3.0.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI); Programmer's Reference

Part 2: Service Classes Definition; Programmer's Reference

Part 3: Printer Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Class Interface - Programmer's Reference

Part 15: Cash In Module Device Class Interface- Programmer's Reference

Part 16: Application Programming Interface (API) - Service Provider Interface (SPI) - Migration from Version
2.0 (see CWA 13449) to Version 3.0 (this CWA) - Programmer's Reference

Part 17: Printer Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Page 4
CWA 14050-12:2000

Part 18: Identification Card Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version
3.0 (this CWA) - Programmer's Reference

Part 19: Cash Dispenser Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0
(this CWA) - Programmer's Reference

Part 20: PIN Keypad Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 21: Depository Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 22: Text Terminal Unit Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version
3.0 (this CWA) - Programmer's Reference

Part 23: Sensors and Indicators Unit Device Class Interface - Migration from Version 2.0 (see CWA 13449) to
Version 3.0 (this CWA) - Programmer's Reference

Part 24: Camera Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 25: Identification Card Device Class Interface - PC/SC Integration Guidelines

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on
the CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from http://www.cenorm.be/isss/Workshop/XFS.

The information in this document represents the Workshop's current views on the issues discussed as of the date
of publication. It is furnished for informational purposes only and is subject to change without notice.
CEN/ISSS makes no warranty, express or implied, with respect to this document.

Revision History:
1.0 May 24, 1993 Initial release of API and SPI specification
1.11 February 3, 1995 Separation of specification into separate documents for

API/SPI and service class definitions
2.00 November 11, 1996 Update release encompassing the self-service environment
3.00 October 18, 2000 Update release encompassing:

- Added WFS_CMD_CAM_RESET
- UNICODE support

For a detailed description see CWA 14050-24
CAM migration document from version 2.00 to version
3.00, revision 1.00, October 18th 2000.

Page 5
CWA 14050-12:2000

1. Introduction

1.1 Background to Release 3.0

The CEN XFS Workshop is a continuation of the Banking Solution Vendors Council workshop and maintains a
technical commitment to the Win 32 API. However, the XFS Workshop has extended the franchise of multi
vendor software by encouraging the participation of both banks and vendors to take part in the deliberations of
the creation of an industry standard. This move towards opening the participation beyond the BSVC's original
membership has been very succesful with a current membership level of more than 20 companies.

The fundamental aims of the XFS Workshop are to promote a clear and unambiguous specification for both
service providers and application developers. This has been achieved to date by sub groups working
electronically and quarterly meetings.

The move from an XFS 2.0 specification to a 3.0 specification has been prompted by a series of factors. Initially,
there has been a technical imperative to extend the scope of the existing specification of the XFS Manager to
include new devices, such as the Card Embossing Unit.

Similarly, there has also been pressure, through implementation experience and the advance of the Microsoft
technology, to extend the functionality and capabilities of the existing devices covered by the specification.

Finally, it is also clear that our customers and the market are asking for an update to a specification, which is
now over 2 years old. Increasing market acceptance and the need to meet this demand is driving the Workshop
towards this release.

The clear direction of the XFS Workshop, therefore, is the delivery of a new Release 3.0 specification based on
a C API. It will be delivered with the promise of the protection of technical investment for existing applications
and the design to safeguard future developments.

1.2 XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error
codes, messages, etc. These commands are used to request functions that are specific to one or more classes of
service providers, but not all of them, and therefore are not included in the common API for basic or
administration functions.

When a service-specific command is common among two or more classes of service providers, the syntax of the
command is as similar as possible across all services, since a major objective of the Extensions for Financial
Services is to standardize command codes and structures for the broadest variety of services. For example, using
the WFSExecute function, the commands to read data from various services are as similar as possible to each
other in their syntax and data structures.

In general, the specific command set for a service class is defined as the union of the specific capabilities likely
to be provided by the developers of the services of that class; thus any particular device will normally support
only a subset of the defined command set.

Page 6
CWA 14050-12:2000

There are three cases in which a service provider may receive a service-specific command that it does not
support:

� The requested capability is defined for the class of service providers by the XFS specification, the particular
vendor implementation of that service does not support it, and the unsupported capability is not considered
to be fundamental to the service. In this case, the service provider returns a successful completion, but does
no operation. An example would be a request from an application to turn on a control indicator on a
passbook printer; the service provider recognizes the command, but since the passbook printer it is
managing does not include that indicator, the service provider does no operation and returns a successful
completion to the application.

� The requested capability is defined for the class of service providers by the XFS specification, the particular
vendor implementation of that service does not support it, and the unsupported capability is considered to be
fundamental to the service. In this case, a WFS_UNSUPP_COMMAND error is returned to the calling
application. An example would be a request from an application to a cash dispenser to dispense coins; the
service provider recognizes the command but, since the cash dispenser it is managing dispenses only notes,
returns this error.

� The requested capability is not defined for the class of service providers by the XFS specification. In this
case, a WFS_ERR_INVALID_COMMAND error is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide
differing subsets of the functionalities that are defined for their service class. Applications may use the
WFSGetInfo and WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about
to use, and modify their behavior accordingly, or they may use functions and then deal with
WFS_ERR_UNSUPP_COMMAND error returns to make decisions as to how to use the service.

Page 7
CWA 14050-12:2000

2. Banking Cameras

This specification describes the functionality of the services provided by the Camera (CAM) services under
XFS, by defining the service-specific commands that can be issued, using the WFSGetInfo,
WFSAsyncGetInfo, WFSExecute and WFSAsyncExecute functions.

Banking camera systems usually consist of a recorder, a video mixer and one or more cameras. If there are
several cameras, each camera focuses a special place within the self-service area (eg. the room, the customer or
the cash tray). By using the video mixer it can be decided, which of the cameras should take the next photo.
Furthermore data can be given to be inserted in the photo (eg. date, time or bankcode).

If there is only one camera that can switch to take photos from different positions, it is presented by the service
provider as a set of cameras, one for each of its possible positions.

Page 8
CWA 14050-12:2000

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.00, October 18, 2000

Page 9
CWA 14050-12:2000

4. Info Commands

4.1 WFS_INF_CAM_STATUS

Description This command reports the full range of information available, including the information that is
provided by the service provider.

Input Param None.

Output Param LPWFSCAMSTATUS lpStatus;

typedef struct _wfs_cam_status
{
WORD fwDevice;
WORD fwMedia[WFS_CAM_CAMERAS_SIZE];
WORD fwCameras[WFS_CAM_CAMERAS_SIZE];
USHORT usPictures[WFS_CAM_CAMERAS_SIZE];
LPSTR lpszExtra;
} WFSCAMSTATUS, * LPWFSCAMSTATUS;

fwDevice
Specifies the state of the Camera device as one of the following flags:
Value Meaning
WFS_CAM_DEVONLINE The device is online (i.e., powered on and operable).
WFS_CAM_DEVOFFLINE The device is offline (e.g., the operator has taken the

device offline by turning a switch or pulling out the
device).

WFS_CAM_DEVPOWEROFF The device is powered off or physically not
connected.

WFS_CAM_DEVNODEVICE There is no device intended to be there; e.g. this type
of self service machine does not contain such a device
or it is internally not configured.

WFS_CAM_DEVHWERROR The device is inoperable due to a hardware error.
WFS_CAM_DEVUSERERROR The device is inoperable because a person is

preventing proper operation.
WFS_CAM_DEVBUSY The device is busy and not able to process an Execute

command at this time.

fwMedia[…]
Specifies the state of the recording media of the cameras. A number of indexes are defined
below. The maximum fwMedia index is WFS_CAM_CAMERAS_MAX.

fwMedia[WFS_CAM_ROOM]
Specifies the state of the recording media of the camera that monitors the whole self-service
area. Specified as one of the following flags:
Value Meaning
WFS_CAM_MEDIAOK The media is in a good state.
WFS_CAM_MEDIAHIGH The media is almost full (threshold).
WFS_CAM_MEDIAFULL The media is full.
WFS_CAM_MEDIANOTSUPP The device does not support sensing the media level.
WFS_CAM_MEDIAUNKNOWN Due to a hardware error or other condition, the state

of the media cannot be determined.

fwMedia[WFS_CAM_PERSON]
Specifies the state of the recording media of the camera that monitors the person standing in
front of the self-service machine. Specified as one of the following flags:
Value Meaning
WFS_CAM_MEDIAOK The media is in a good state.
WFS_CAM_MEDIAHIGH The media is almost full (threshold).
WFS_CAM_MEDIAFULL The media is full.
WFS_CAM_MEDIANOTSUPP The device does not support sensing the media level.
WFS_CAM_MEDIAUNKNOWN Due to a hardware error or other condition, the state

of the media cannot be determined.

Page 10
CWA 14050-12:2000

fwMedia[WFS_CAM_EXITSLOT]
Specifies the state of the recording media of the camera that monitors the exit slot(s) of the
self-service machine. Specified as one of the following flags:
Value Meaning
WFS_CAM_MEDIAOK The media is in a good state.
WFS_CAM_MEDIAHIGH The media is almost full (threshold).
WFS_CAM_MEDIAFULL The media is full.
WFS_CAM_MEDIANOTSUPP The device does not support sensing the media level.
WFS_CAM_MEDIAUNKNOWN Due to a hardware error or other condition, the state

of the media cannot be determined.

fwCameras[...]
Specifies the state of the cameras. A number of cameras are defined below. The maximum
camera index is WFS_CAM_CAMERAS_MAX.

fwCameras[WFS_CAM_ROOM]
Specifies the state of the camera that monitors the whole self-service area. Specified as one
of the following flags:
Value Meaning
WFS_CAM_CAMNOTSUPP The camera is not supported.
WFS_CAM_CAMOK The camera is in a good state.
WFS_CAM_CAMINOP The camera is inoperative.
WFS_CAM_CAMUNKNOWN Due to a hardware error or other condition, the state

of the camera cannot be determined.

fwCameras[WFS_CAM_PERSON]
Specifies the state of the camera that monitors the person standing in front of the self-service
machine. Specified as one of the following flags:
Value Meaning
WFS_CAM_CAMNOTSUPP The camera is not supported.
WFS_CAM_CAMOK The camera is in a good state.
WFS_CAM_CAMINOP The camera is inoperative.
WFS_CAM_CAMUNKNOWN Due to a hardware error or other condition, the state

of the camera cannot be determined.

fwCameras[WFS_CAM_EXITSLOT]
Specifies the state of the camera that monitors the exit slot(s) of the self-service machine.
Specified as one of the following flags:
Value Meaning
WFS_CAM_CAMNOTSUPP The camera is not supported.
WFS_CAM_CAMOK The camera is in a good state.
WFS_CAM_CAMINOP The camera is inoperative.
WFS_CAM_CAMUNKNOWN Due to a hardware error or other condition, the state

of the camera cannot be determined.

usPictures[…]
Specifies the number of pictures stored on the recording media of the cameras.
A number of indexes are defined below. The maximum usPictures index is
WFS_CAM_CAMERAS_MAX.
Index Meaning
WFS_CAM_ROOM The camera that monitors the whole self-service area.
WFS_CAM_PERSON The camera that monitors the person standing in front

of the self-service machine
WFS_CAM_EXITSLOT The camera that monitors the exit slot(s) of the self-

service machine.

lpszExtra
Specifies a list of vendor-specific, or any other extended, information. The information is
returned as a series of "key=value" strings so that it is easily extensible by service providers.
Each string will be null-terminated, with the final string terminating with two null characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Page 11
CWA 14050-12:2000

Comments Applications which require or expect specific information to be present in the lpszExtra
parameter may not be device or vendor-independent.

4.2 WFS_INF_CAM_CAPABILITIES

Description This command is used to retrieve the capabilities of the Camera System

Input Param None.

Output Param LPWFSCAMCAPS lpCaps;

typedef struct _wfs_cam_caps
{
WORD wClass;
WORD fwType;
WORD fwCameras[WFS_CAM_CAMERAS_SIZE];
USHORT usMaxPictures;
WORD fwCamData;
USHORT usMaxDataLength;
WORD fwCharSupport;
LPSTR lpszExtra;
} WFSCAMCAPS, * LPWFSCAMCAPS;

wClass
Specifies the logical service class, value is:
WFS_SERVICE_CLASS_CAM

fwType
Specifies the type of the camera device; only current value is:
Value Meaning
WFS_CAM_TYPE_CAM Camera system

fwCameras[...]
Specifies which cameras are available. A number of cameras are defined below. The
maximum camera index is WFS_CAM_CAMERAS_MAX.

fwCameras[WFS_CAM_ROOM]
Specifies whether the camera that monitors the whole self-service area is available.
Specified as one of the following flags:
Value Meaning
WFS_CAM_NOT_AVAILABLE This camera is not available.
WFS_CAM_AVAILABLE This camera is available.

fwCameras[WFS_CAM_PERSON]
Specifies whether the camera that monitors the person standing in front of the self-service
machine is available. Specified as one of the following flags:
Value Meaning
WFS_CAM_NOT_AVAILABLE This camera is not available.
WFS_CAM_AVAILABLE This camera is available.

fwCameras[WFS_CAM_EXITSLOT]
Specifies whether the camera that monitors the exit slot(s) of the self-service machine is
available. Specified as one of the following flags:
Value Meaning
WFS_CAM_NOT_AVAILABLE This camera is not available.
WFS_CAM_AVAILABLE This camera is available.

usMaxPictures
Specifies the maximum number of pictures that can be stored on the recording media.

Page 12
CWA 14050-12:2000

fwCamData
Specifies, if data can be added to the picture. Specified as a combination of the following
flags:
Value Meaning
WFS_CAM_NOTADD No data can be added to the picture.
WFS_CAM_AUTOADD Data is added automatically to the picture.
WFS_CAM_MANADD Data can be added manually to the picture using the

filed lpszCamData in the
WFS_CMD_CAM_TAKE_PICTURE command.

usMaxDataLength
Specifies the maximum length of the data that is displayed on the photo. Zero, if data cannot
be manually added to the picture.

fwCharSupport
One or more flags specifying the Character Set supported by the service provider:
Value Meaning
WFS_CAM_ASCII ASCII is supported for execute command data values.
WFS_CAM_UNICODE UNICODE is supported for execute command data

values.

lpszExtra
Specifies a list of vendor-specific, or any other extended, information. The information is
returned as a series of "key=value" strings so that it is easily extensible by service providers.
Each string will be null-terminated, with the final string terminating with two null characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra
parameter may not be device or vendor-independent.

Page 13
CWA 14050-12:2000

5. Execute Commands

5.1 WFS_CMD_CAM_TAKE_PICTURE

Description This command is used to start the recording of the camera system. It is possible to select which
camera or which camera position should be used to take a picture. Furthermore data can be
sent to be displayed on the photo.

Input Param LPWFSCAMTAKEPICT lpTakePict;

typedef struct _wfs_cam_take_picture
{
WORD wCamera;
LPSTR lpszCamData;
LPWSTR lpszUNICODECamData;
} WFSCAMTAKEPICT, * LPWFSCAMTAKEPICT;

wCamera
Specifies the camera that should take the photo as one of the following flags:
Value Meaning
WFS_CAM_ROOM Monitors the whole self-service area.
WFS_CAM_PERSON Monitors the person standing in front of the self-

service machine.
WFS_CAM_EXITSLOT Monitors the exit slot(s) of the self-service machine.

lpszCamData
Specifies the text string to be displayed on the photo. If the maximum text length is
exceeded, it will be truncated. In this case or if the text given is invalid an execute event
WFS_EXEE_CAM_INVALIDDATA is generated. Nevertheless the picture is taken.

lpszUNICODECamData
Specifies the UNICODE text string to be displayed on the photo. If the maximum text length
is exceeded, it will be truncated. In this case or if the text given is invalid an execute event
WFS_EXEE_CAM_INVALIDDATA is generated. Nevertheless the picture is taken.

The lpszUNICODECamData field should only be used if the service provider supports
UNICODE. The lpszCamData and lpszUNICODECamData fields are mutually exclusive.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 0], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CAM_CAMNOTSUPP The specified camera is not supported.
WFS_ERR_CAM_MEDIAFULL The recording media is full.
WFS_ERR_CAM_CAMINOP The specified camera is inoperable.
WFS_ERR_CAM_CHARSETNOTSUPP Character set(s) supported by service provider is

inconsistent with use of lpszCamData or
lpszUNICODECamData fields.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by
this command:

Value Meaning
WFS_USRE_CAM_MEDIATHRESHOLD The state of the recording media reached a

threshold.
WFS_EXEE_CAM_INVALIDDATA The text string given is to long or in some

other way invalid.
Comments None.

Page 14
CWA 14050-12:2000

5.2 WFS_CMD_CAM_RESET

Description Sends a service reset to the service provider.

Input Param None

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments This command is used by an application control program to cause a device to reset itself to a
known good condition.

Page 15
CWA 14050-12:2000

6. Events

6.1 WFS_USRE_CAM_MEDIATHRESHOLD

Description This user event is used to specify that the state of the recording media reached a threshold.

Event Param LPWORD lpwMediaThreshold;

Specified as one of the following flags:
Value Meaning
WFS_CAM_MEDIAOK The recording media is a good state.
WFS_CAM_MEDIAHIGH The recording media is almost full.
WFS_CAM_MEDIAFULL The recording media is full.

Comments None.

6.2 WFS_EXEE_CAM_INVALIDDATA

Description This execute event is used to specify that the text string given was to long or in some other way
invalid.

Event Param None.

Comments None.

Page 16
CWA 14050-12:2000

7. C - Header file

/**
* *
* xfscam.h XFS - Camera (CAM) definitions *
* *
* Version 3.00 (10/18/00) *
* *
**/

#ifndef __INC_XFSCAM__H
#define __INC_XFSCAM__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack (push, 1)

/* values of WFSCAMCAPS.wClass */

#define WFS_SERVICE_CLASS_CAM (10)
#define WFS_SERVICE_VERSION_CAM (0x0003) /* Version 3.00 */
#define WFS_SERVICE_NAME_CAM "CAM"

#define CAM_SERVICE_OFFSET (WFS_SERVICE_CLASS_CAM * 100)

/* CAM Info Commands */

#define WFS_INF_CAM_STATUS (CAM_SERVICE_OFFSET + 1)
#define WFS_INF_CAM_CAPABILITIES (CAM_SERVICE_OFFSET + 2)

/* CAM Execute Commands */

#define WFS_CMD_CAM_TAKE_PICTURE (CAM_SERVICE_OFFSET + 1)
#define WFS_CMD_CAM_RESET (CAM_SERVICE_OFFSET + 2)

/* CAM Messages */

#define WFS_USRE_CAM_MEDIATHRESHOLD (CAM_SERVICE_OFFSET + 1)
#define WFS_EXEE_CAM_INVALIDDATA (CAM_SERVICE_OFFSET + 2)

/* values of WFSCAMSTATUS.fwDevice */

#define WFS_CAM_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_CAM_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_CAM_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_CAM_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_CAM_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_CAM_DEVUSERERROR WFS_STAT_DEVUSERERROR
#define WFS_CAM_DEVBUSY WFS_STAT_DEVBUSY

/* number of cameras supported/length of WFSCAMSTATUS.fwCameras field */

#define WFS_CAM_CAMERAS_SIZE (8)
#define WFS_CAM_CAMERAS_MAX (WFS_CAM_CAMERAS_SIZE - 1)

/* indices of WFSCAMSTATUS.fwMedia[...]
 WFSCAMSTATUS.fwCameras [...]
 WFSCAMSTATUS.fwPictures[...]
 WFSCAMCAPS.fwCameras [...]
 WFSCAMTAKEPICT.wCamera */
#define WFS_CAM_ROOM (0)
#define WFS_CAM_PERSON (1)
#define WFS_CAM_EXITSLOT (2)

/* values of WFSCAMSTATUS.fwMedia */

Page 17
CWA 14050-12:2000

#define WFS_CAM_MEDIAOK (0)
#define WFS_CAM_MEDIAHIGH (1)
#define WFS_CAM_MEDIAFULL (2)
#define WFS_CAM_MEDIAUNKNOWN (3)
#define WFS_CAM_MEDIANOTSUPP (4)

/* values of WFSCAMSTATUS.fwCameras */

#define WFS_CAM_CAMNOTSUPP (0)
#define WFS_CAM_CAMOK (1)
#define WFS_CAM_CAMINOP (2)
#define WFS_CAM_CAMUNKNOWN (3)

/* values of WFSCAMCAPS.fwType */

#define WFS_CAM_TYPE_CAM (1)

/* values of WFSCAMCAPS.fwCameras */

#define WFS_CAM_NOT_AVAILABLE (0)
#define WFS_CAM_AVAILABLE (1)

/* values of WFSCAMCAPS.fwCamData */

#define WFS_CAM_NOTADD (0)
#define WFS_CAM_AUTOADD (1)
#define WFS_CAM_MANADD (2)

/* values of WFSCAMCAPS.fwCharSupport, WFSCAMTAKEPICT.fwCharSupport */

#define WFS_CAM_ASCII (0x0001)
#define WFS_CAM_UNICODE (0x0002)

/* XFS CAM Errors */

#define WFS_ERR_CAM_CAMNOTSUPP (-(CAM_SERVICE_OFFSET + 0))
#define WFS_ERR_CAM_MEDIAFULL (-(CAM_SERVICE_OFFSET + 1))
#define WFS_ERR_CAM_CAMINOP (-(CAM_SERVICE_OFFSET + 2))
#define WFS_ERR_CAM_CHARSETNOTSUPP (-(CAM_SERVICE_OFFSET + 3))

/*===*/
/* CAM Info Command Structures */
/*===*/

typedef struct _wfs_cam_status
{
 WORD fwDevice;
 WORD fwMedia[WFS_CAM_CAMERAS_SIZE];
 WORD fwCameras[WFS_CAM_CAMERAS_SIZE];
 USHORT usPictures[WFS_CAM_CAMERAS_SIZE];
 LPSTR lpszExtra;
} WFSCAMSTATUS, *LPWFSCAMSTATUS;

typedef struct _wfs_cam_caps
{
 WORD wClass;
 WORD fwType;
 WORD fwCameras[WFS_CAM_CAMERAS_SIZE];
 USHORT usMaxPictures;
 WORD fwCamData;
 USHORT usMaxDataLength;
 WORD fwCharSupport;
 LPSTR lpszExtra;
} WFSCAMCAPS, * LPWFSCAMCAPS;

/*===*/
/* CAM Execute Command Structures */
/*===*/

typedef struct _wfs_cam_take_picture
{

Page 18
CWA 14050-12:2000

 WORD wCamera;
 LPSTR lpszCamData;
 LPWSTR lpszUNICODECamData;
} WFSCAMTAKEPICT, *LPWFSCAMTAKEPICT;

/* restore alignment */
#pragma pack (pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSCAM__H */

